Voditelj |
Doc.dr.sc. Goran Sedmak, Medicinski fakultet Sveučilišta u Zagrebu
|
Suradnici |
Dr.sc. Ivana Jurjević, dr.med. Dr.sc. Andrija Štajduhar, mag. inf et. math. Fadi Almahariq, dr.med. Ema Bokulić, dr.med.
|
Mjesto provođenja |
Medicinski fakultet Sveučilišta u Zagrebu Klinički bolnički centar Zagreb Klinička bolnica Dubrava
|
Iznos potpore |
1.672.032,87 kn - Hrvatska zaklada za znanost 265.000,00 kn - Medicinski fakultet Sveučilišta u Zagrebu
|
Trajanje projekta |
60 mjeseci
|
Subtalamus je trenutno jedna od klinički najzanimljivijih struktura bazalnih ganglija. Neurokirurško stimuliranje subtalamičke jezgre pomoglo je mnogim bolesnicima s Parkinsonovom bolesti otpornom na levodopu, no dovelo je i do neželjenih nuspojava. Nuspojave su posljedica stimuliranja neželjenih dijelova subtalamičke jezgre. Iako je u kliničkoj praksi uvriježena podjela subtalamičke jezgre u tri segmenta, postoje mnoga istraživanja koja osporavaju tu tvrdnju. Prva studija o podjeli subtalamičke jezgre objavljena je 1925. godine. Od tada pa do danas objavljene su 43 studije na čovjeku i primatima koje se bave ovom temom koristeći različite metode. Pregledom ovih studija pokazalo se da taj zaključak nije posve opravdan. Naime, samo manji broj studija (4) zagovara tri segmenta subtalamičke jezgre, a broj segmenata seže od 0 do 4. Zbog izrazite kliničke značajnosti subtalamičke jezgre i nedosljednosti u opisu broja segmenata subtalamičke jezgre, u predloženom istraživanju analizirati ćemo podjelu subtalamičke jezgre pomoću klasičnih histoloških metoda (npr. Nissl, Gallyas), modernim histološkim metodama (imunohistokemija i in-situ hibridizacija), metodama slikovnog prikaza mozga (strukturni MR, DTI MR) i modernim metodama molekularne biologije. Za kvantitativnu histološku analizu koristiti ćemo stereološku metodu. Također u sklopu ovog projekta nastaviti ćemo razvoj i testiranje programskog rješenja za automatsko prepoznavanje i kvantifikaciju neurona na histološkim preparatima. U prvoj fazi projekta analizirati ćemo post-mortem uzorke subtalamičke jezgre pomoću histoloških metoda i strukturnih MR metoda. U drugoj fazi projekta korelirati ćemo dobivene post-mortem histološke i MR rezultate s MR nalazima subtalamičke jezgre u zdravih dobrovoljaca u svrhu izrade prostorne mape subtalamičke jezgre in-vivo. U trećoj fazi korelirati ćemo podatke iz prve dvije faza s MR nalazima pacijenata oboljelih od Parkinsonove bolesti prije i nakon duboke mozgovne stimulacije.
Voditelj |
Prof.dr.sc. Hrvoje Banfić, Medicinski fakultet Sveučilišta u Zagrebu
|
Institucije partneri |
Fred Hutchinson Cancer Research Center, Seattle, WA, USA
|
Trajanje projekta |
3 godine
|
Signaling pathways involving phosphoinositide 3-kinase (PI-3K) and phosphoinositide (PI) cycle are the most frequently targeted signaling pathways in human cancer. In addition to the signaling events at the cell membrane, the PI cycle is known to occur in nuclei and to regulate important nuclear events, including transcription, mRNA export and telomere length. The major progress in understanding the functional role of the nuclear phospholipid pathway has been recently made by genetic and biochemical studies in the budding yeast Sacharomyces cerevisiae. The aim of this proposal is to develop cell-based assays using heterologous expression of kinases involved in the endonuclear phospholipid signaling in the unicellular eukaryote, S. cerevisiae. In addition, yeast model will be used to dissect the role of particular kinases, especially phospholipase C and PI-3Ks, in regulation of principal and evolutionary conserved nuclear processes. The main hypothesis is that the expression of human proteins in yeasts will induce growth interference and thus provide a yeast cell-based assay to positively screen pharmaceutical agents. The ultimate goal is to be able to identify new, selective small molecule inhibitors of the phospholipid signaling pathway that should provide new opportunities for mechanism-based anticancer therapies. This goal will be achieved by collaborative efforts of two experienced scientists; the project leader from Croatia, who is an expert in the field of the nuclear phospholipid signaling, and Croatian co-applicant from USA, who is an expert in yeast genetics with great experience in using yeast-based positive screen for anticancer drug discovery.
In the past 20 years, several studies confirmed the existence of nuclear phosphoinositide (PI) cycle which occurs independently from the classical pathway at the cell membrane (1). The nuclear PtdIns(4,5)P2 serves as a substrate for PI-phospholipase C mediated hydrolysis and phosphoinositide 3-kinase (PI-3K) -mediated phosphorylation. Although an increase in the level of diacylglycerol (DAG), Ins(1,4,5)P3 or 3-phosphorylated PtdIns has been shown to occur in nuclei in response to external stimuli or during synchronous progression through the cell cycle, there is a paucity of data on how these nuclear messengers regulate nuclear processes and for some of them, like Ins(1,4,5)P3, there are no proofs that they play the same role in the regulation of the calcium level as the classical one at the cell membrane. The major progress in understanding the functional role of the pathway has been recently made by genetic and biochemical studies in the budding yeast Sacharomyces cerevisiae. Yeasts have enzymes to generate PtdIns(4,5)P2 within the nucleus and have a nuclear PI-PLC, which can generate DAG and Ins(1,4,5)P3, the later serving as a precursor for the synthesis of higher inositol phosphates that have been convincingly proved to regulate such as important nuclear events like mRNA export (2), transcription (3) and telomere length (4). However, yeasts lack some elements of the „classical“ PI signaling as they have no Ins(1,4,5)P3 receptor in their genome and do not utilize DAG to activate protein kinase C suggesting that there are many similarities between yeast and endonuclear phospholipid signaling and that the evolutionary standpoint can be informative. Several years ago, when a possible role for the nuclear PI-PLC in nuclear envelope assembly and cell cycle emerged, one of the hypotheses suggested that the nucleus may have been the site at which phosphoinositide signaling originally evolved and that the cycle was later duplicated in the plasma membrane for the signaling purpose (5). The conservation of kinases responsible for the generation of inositol phosphates from yeast to man suggests that the primordial role of the pathway may be the regulation of some important nuclear processes, thus making the components of the endonuclear pathway an attractive future candidates for drug design.
In mammals, there are several different PI-PLC isoforms that are grouped into 6 families (-?,-?,-?,-?,-? and -?); the one that is the most consistently reported to be activated in nuclei is PI-PLC-?1. Our previous work demonstrated cyclic, MAPK-mediated activation of b splice variant of PI-PLC-?? in nuclei of mammalian cells which was important for the progression through the cell cycle (6). A member of PI-PLC subfamily delta is the only one present in all eukaryotes (including Plc1p encoded by a PLC1 in yeasts), nucleocytoplasmic shuttling of PLC-? has been confirmed in mammalian cells, and our previous study show an increase in the activity of PLC-??that was localized in the chromatin fraction of the nuclei (7). In the yeasts models, colocalization of PI-PLC-?? (i.e. Plcp1) with chromatin has been described and suggested to have a role in kinetochore function and PLC deleted cells were demonstrated to exhibit a delay at the G2/M phase of the cell cycle (8). Our preliminary data in human cells show that an increase in the PLC-activity at late G1 is partially due to the presence of immunoprecipitated PLC-?.
PI-3K pathway has been recently demonstrated to be the most frequently targeted signaling pathway in human cancer (9). PI-3Ks phosphorylate phosphoinositides at the 3' position of the inositol ring and include several isoforms that are divided into three classes based on their sequence homology, substrate preference and mechanism of activation. The best studied and the most related to cancer are class I enzymes that are complex heterodimers responsible for phosphorylation of PtdIns(4,5)P2 into PtdIns(3,4,5)P3. The class I enzymes are absent in S. cerevisiae and PtdIns(3,4,5)P3 seems to have no role in the physiology of budding yeasts. The only PI-3K in yeasts is Vps 34 which regulates vesicle trafficking; the enzyme is homologous to the mammalian class III enzyme that phosphorylates PtdIns to produce PtdIns(3)P. The least is known about physiological role and mode of regulation of mammalian class II enzymes which include three isoforms (PI-3K-C2?, -ß and -?) and show preference for PtdIns and PtdIns(4)P as substrate in vitro but, similar to Vps34, produces only PtdIns(3)P in vivo. Growth factors activate class II enzymes, and one of the isoform, PI-3K-C2? has been recently reported to regulate the migration and survival of human tumor cells (10). Our previous work demonstrated the increase in the activity of the PI-3K-C2? immunoprecipitated from the nuclei of proliferating hepatocytes and synchronized leukemia cells that was due to the calpain-mediated proteolysis and nuclear translocation of the enzyme (11,12).
The investigation of the physiological role of the particular PLC ands PI-3K isoform as possible drug-target in vivo is greatly hampered by the lack of isoform-specific small molecule inhibitors. The inhibitors used to study the role of PI-PLCs, like ET-18-OCH3, neomycin or similar compounds are highly non-specific. One of two inhibitors that are widely used to inhibit PI-3Ks, wortmannin, has broad activity within the family including the members of the PI-3K-related enzymes, such as ATR, ATM, DNA-PK and mTOR. On the other hand, class III enzymes are highly resistant to more specific inhibition by LY 294002 and class II are much less sensitive than class I enzymes. Although recent biochemical screen of several compounds identified new selective inhibitors for some class I isoforms, no promising inhibitors of class II enzymes (or PI-3K-C2?) were identified (13)
Cell-based assays designed in budding yeasts (S. cerevisiae) have recently emerged as a useful model system for anticancer drug discovery (14). In addition to possibility to express mammalian proteins with yeast homologues which may functionally complementate yeast mutations, yeast-based phenotypic screens can be designed for targets that have no yeast homologues. Human PI-3K class I and some other proteins linked with accelerated growth in human cancers block growth when expressed in yeasts and the growth of strains overexpressing PI-3K can be restored through the expression of the phosphatase PTEN, which antagonizes PI-3K action (15). This provide the basis for testing putative selective inhibitors in a positive-selection screen in which the outcome of the successful inhibition is the stimulation of the proliferation which is far more specific than negative-screen in which the effect of the selective inhibition can not be easily distinguished from a non-specific toxic effect (16).
This is a proposal to develop cell-based assays using heterologous expression of phospholipases and kinases involved in the endonuclear phospholipid signaling in the unicellular eukaryote, S. cerevisiae (yeast). In addition, signaling mechanisms found to operate in the nuclei of mammalian cells will be tested in yeast models synchronously progressing through the cell cycle. These assays should provide valuable tool to dissect the role of particular enzymes, especially PLC and PI-3K isoforms, in regulation of principal and evolutionary conserved nuclear processes. The working hypothesis is that the level of phosphoinositides and inositol phosphates will change in yeast during the cell cycle and that the expression of heterologous proteins will induce growth interference and thus provide a cell-based assay to positively screen pharmaceutical agents. The ultimate goal is to be able to identify small molecule inhibitors that selectively influence the pathway. The project leader has a long-term research interest in the field of the nuclear phospholipid signaling, particularly biochemistry of phosphoinositides and the nuclear PI-PLC-?1 and PI-3K-C2?. Co-applicant is an expert in yeast genetics, particularly in chromatin and telomere biology and DNA replication checkpoints, who has successfully used yeast-based positive screen to identify new selective inhibitors of Sir2p chromatin modifying enzymes and applied these compounds as anticancer drugs (14,16).
Ministarstvo znanosti, obrazovanja i sporta, u ime Vlade Republike Hrvatske, pokrenulo je 2007. godine program Fond "Jedinstvo uz pomoć znanja"(Unity through Knowledge Fund - UKF). Fond je poduprt kroz Hrvatski projekt tehnologijskog razvoja (STP I), zajmom Svjetske banke br. 7320-HR. Fond potiče osnovna i primjenjena znanstvena istraživanja koja stvaraju nova znanja i pokazuju snagu za natjecanje na međunarodnoj razini. Financiraju se dva tipa istraživanja: istraživanja koja privlače stručnjake i investicije u Hrvatsku te istraživanja koja omogućuju suradnju/vođenje europskih i ostalih međunarodnih projekata. Posebice, bit će dana podrška suradničkim projektima s dijasporom koji omogućuju prijenos znanja i tehnologija s vodećih međunarodnih znanstveno-istraživačkih institucija na hrvatski privatni i javni sektor.Fond podupire istraživanja koji izravno i neizravno jačaju hrvatsko gospodarstvo i utemeljuju ga na znanju. Financira se razvoj inovacija, patenata i komercijalne i druge primjene znanstvenih rezultata. Posebno se podržavaju ulaganja iz gospodarstva u znanstvene projekte. Posebno će se podržati investicije poslovnog sektora u znanstvene projekte. Korištenjem resursa znanstvene i profesionalne dijaspore podržat će se financiranje tvrtki koje primjenjuju nova znanja. Fond podržava sve inicijative koje pridonose razvoju znanstvenog sustava u Hrvatskoj kroz suradnju s dijasporom. U tu svrhu potiče se razvoj koji omogućuje gospodarsku konkurentnost, potiče obrazovanje i znanstvenu izvrsnost, te čini Hrvatsku privlačnim mjestom za vrhunske znanstvenike, kako iz dijaspore tako i druge. Financiraju se projekti koji provode misiju Fonda kroz rad u administrativnom, infrastrukturnom te upravljačkom području znanosti i tehnologije.
Sukladno tome slijedeći projekti i programi istraživača Hrvatskog instituta za istraživanje mozga financirani su sredstvima Fonda "Unity thorugh Knowledge":
Hrvatska zaklada za znanost osnovana je s temeljnom svrhom razvoja znanosti, visokog obrazovanja i tehnologijskog razvoja u Republici Hrvatskoj s krajnjim ciljem osiguravanja društvenog i gospodarskog razvoja i poticanja zapošljavanja. Radi ostvarivanja svoje temeljne svrhe Zaklada osigurava financijsku potporu znanstvenih, visokoobrazovnih i tehnologijskih programa i projekata te potporu međunarodne suradnje na području znanosti i visokog obrazovanja. Potpora uključuje i financiranje temeljnjih, primjenjenih i razvojnih znanstvenih istraživanja na temama od strateških potreba za Republiku Hrvatsku. Zaklada dodijeljuje stipendije poslijediplomandima, poslijedoktorandima te stručnjacima u gospodarstvu i stručnjacima u znanstvenim i visokoškolskim ustanovama Republike Hrvatske. Zaklada raspisuje natječaje za znanstvene projekte i programe u skladu s nacionalnim strateškim dokumentima za razvoj znanosti, na temelju kojih provodi postupak prijave, vrednovanja, nadzora i evaluacije financiranih projekata i kolaborativnih znanstvenih programa.
Sukladno tome slijedeći projekti i programi istraživača Hrvatskog instituta za istraživanje mozga financirani su sredstvima Hrvatske zaklade za znanost:
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod mazim placerat facer possim assum. Typi non habent claritatem insitam; est usus legentis in iis qui facit eorum claritatem. Investigationes demonstraverunt lectores legere me lius quod ii legunt saepius. Claritas est etiam processus dynamicus, qui sequitur mutationem consuetudium lectorum. Mirum est notare quam littera gothica, quam nunc putamus parum claram, anteposuerit litterarum formas humanitatis per seacula quarta decima et quinta decima. Eodem modo typi, qui nunc nobis videntur parum clari, fiant sollemnes in futurum.